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1. INTRODUCTION

Letjbe an analytic function on the unit closed disk D= {ZEC: Izi ~ 1}.
In notation j E A(D). Let ZI' Z2'"'' be a sequence of points in D satisfying

Define

Z n are all distinct and lim Z n = O. (1.1 )

=k~1 j(zd C~I (Z-Zi))/C~1(Zk- Z;)) (1.2)
i#k i#k

to be the Lagrange interpolation polynomial of j at Zl' Z2 , ... , Zn' Then it is
well known [3J that

lim IIPn - 1 - jll 00 = O.
n

(1.3)

Here and in the following II' 1100 will always be the sup norm on D.
From (1.3) it follows that, given {j(zd}, we can recover j(z) as a limit.

It is natural to study a similar setting where, however, errors are allowed.
More precisely, can we reconstruct j if we are given sequentially the data

(1.4 )

where the errors ek are assumed to be independent and identically dis­
tributed random vectors on a probability space with mean (0,0) and finite
variance.
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By (1.3) it is natural to take

k~1 (f(Zk) + ek) CDI (z - ZJ)I((II (Zk - ZJ) (1.5)
i#k i#k

as our estimator. Unfortunately, this approach does not work [1]. This
leads to the consideration of the following problem

n

min L Ig(zd - (f(Zk) + ekW,
geSm k~ I

(1.6)

where m ~ n -1 and Sm is the set of all polynomials with order ~m. Note
that (1.5) is the solution to problem (1.6) if m = n -1. The reason why
(1.5) is not suitable as an estimator to ! is because the corresponding
minimization space Sn_1 is too big. According to Grenander's sieve
method [5,6], this difficulty can often be overcome if the minimum in
(1.6) is taken over a sequence of smaller subspaces Sm, m~n-1, which
grows slowly to A(D) as n -. 00.

Problem (1.6) can be regarded as a minimization problem over 2(m + 1)
real variables. By using elementary calculus it is not hard to show that
(1.6) has a unique solution

(1.7)

where Fn=(f(zd,!(Z2)"",!(zn)), En=(eJ,e2, ... ,en), Wm + 1 is the
(m + 1) x 1 column vector (1, Z, ... , zm),

A ( i-I)
m+ I,n = Zj (m+ I)xn

is the (m + 1) x n matrix with (Zj)i- I as its (i, j)th element, and

Cm + 1 = (Am+l.n)· (Am+l,n)*'

Here * means complex transposition. Note that C';; II exists, because Cm + I
is positive definite by (1.1) and the assumption that m ~ n - 1. By letting all
en = 0, it is clear that the deterministic part

of (1.7) is the solution to the problem

(1.8 )

n

min L Ig(Zk) - !(ZkW,
geSm k= I

m~n-1 (1.9)

and Fn.m(z) should converge to !(z) in some way if the sieve method is
applicable to the estimation problem (1.4).
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The main purpose of this paper is to verify this claim. In fact, Fn,m(z) has
the following representation.

THEOREM 1. Let Zl, Z2,'''' Zn be n distinct points andf any function. Then
the unique solution Fn,m(z) to problem (1.9) satisfies

Fn,m(z)

Ll <;il <iz<'" <im+l <;n(Dl <;j<k<;m+ 1 IZij - Zikl2
) Pm(Z; f; Zip Ziz'"'' Zim+J

Ll~il <i2<"'<im+l~n(nl ~j<k~m+ 1 IZij - Zik l
2

)

(1.10)

where Pm(z; f; Zip Ziz"'" Zim+l)' as in (1.2), is the mth-order Lagrange inter­
polation polynomial off at Zil' ZiP"" Zim+I'

In view of (1.3) it is not hard to believe the following result.

THEOREM 2. LetfEA(D) and {zn} satisfy (1.1). Then

lim IlFn,m(z)- f(z)lloo =0

as both n, m tend UJ IX) with m ::;; n - 1.

Finally, let us say a few words on the estimation problem (1.4). In order
that there is a restoration algorithm working for every J E A(D), it is
necessary and sufficient that {zn} has infinite convergence exponent, i.e.,

for every p > O.

This result will appear in [2]. There, how m = m(n) tends to 00 will
depend on {z 1 , Z 2 , ... , Z n} and is not explicitly known.

2, PROOF OF THEOREM 1

Define the symmetric sums Tk(ZI , Z2 , ... , ZJ as follows

U Un (Z-Zi)= I (-I)kTk(zl,z2, ...,zJ zu-k.
i=l k~O

We shall first prove a lemma on Cm + I .

LEMMA. Let C,;:;ll=(d(i,}))(m+l)x(m+l)' Then

(2.1 )

detCm + 1 = L (n IZiJ-ZikI2) (2.2)
l:!S;i]<h< ... <im+l~n l::S;j<k~m+l
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and for 0 ~ r, s ~ m,
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d(r + 1, s + 1) = (-1)' + s

(2.3 )

1 ~ ir < i2 < .. , < im ~ n

x (";j~,,;m IZlj - Zit12)I(det Cm+I)'

Proof Since Cm+I=(Am+l,n)·(Am+l.n)*' the Binet-Cauchy formula
[4] tells us that det Cm + I and d(r + 1, s+ 1) can be expressed as sums of
products of the corresponding minors of Am + I,n and (Am + I,n)*' Equalities
(2.2) and (2.3) will then be proved if one notes that

det An,n = n (Zi - Zj)
l~j<i~n

and the nxn matrix obtained from An+l,n by deleting its (k+ l)th row
(zt, z~ '''', z~) has determinant

TI (zi- z)'Tn_ k (ZI,Z2"",Zn)'
I ~j<i~n

Q,E.D.

Now we may prove Theorem 1. By symmetry it is enough to show that
for each 0 ~ s ~ m,f(zd ZS has the same coefficient on both sides of (1.10).
By (1.2), (2.1), and (2.2), this is equivalent to show that

m

L z~ d(r + 1, s + 1)
,=0

= L (mff (ZI - Zik ))( n IZi
J

- Zik l
2)

2 ~ ;2 < i) < ... < im+ 1~ n k = 2 2 ~ j < k :::;;. m + 1

X (-1 )m-s Tm-s(Zi2"'" zim+J/(det Cm+1)' (2.4)

Here we have used the fact that IZI-ziI2=(zl-z;)(zl-z;), By (2.1) and
(2.3), the left-hand side of (2.4) equals

( _1)m +s 2: Tm-s(Zil' Zi2"'" ZiJ' (fI (ZI - Zik ))

1 ~ it < ;2 < ... < im ~ n k = 1

xC,,; }!k"; m IZij - Z iY)I(det Cm + d·

In order that nZ'= I(ZI - zit) # 0 it is necessary that i l ~ 2. Now change the
index from ik to ik + l' we get the right-hand side of (2.4). This completes
the proof.
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3. PROOF OF THEOREM 2
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Since f E A(15), there is a number r> 1 such that f is analytic on
{z: Izi ~r}. Under the assumption (1.1), it is well known [3,
Theorem3.6.1] that f(z)-Pm(z;J;z;1' Z;2'"'' z;m+J equals the following
contour integral

(2ni) -I Ie [f(t) :0: (z - Zit)J/[ (t - z) TI: (t - Zit)Jdt,

where C= {z: Izl =r}. Because limzn=O, it can be shown easily [3,
Theorem 4.4.3] that there are positive constants M, b with r - b > 1, such
that

Ilf(z) - Pm(z;f; Z;I' Z;2"'" z;m+JII 00 ~ M(r - b)-m

holds for all {Zit' Z;2"'" z;m+J. Then the theorem follows from Theorem 1.
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